318 research outputs found

    Functional mechanisms involved in the internal inhibition of taboo words

    Get PDF
    The present study used functional magnetic resonance imaging to investigate brain processes associated with the inhibition of socially undesirable speech. It is tested whether the inhibition of undesirable speech is solely related to brain areas associated with classical stop signal tasks or rather also involves brain areas involved in endogenous self-control. During the experiment, subjects had to do a SLIP task, which was designed to elicit taboo or neutral spoonerisms. Here we show that the internal inhibition of taboo words activates the right inferior frontal gyrus, an area that has previously been associated with externally triggered inhibition. This finding strongly suggests that external social rules become internalized and act as a stop-signal

    Assessing publication bias in coordinate-based meta-analysis techniques?

    Get PDF
    Introduction While publications of fMRI studies have flourished, it is increasingly recognized that progress in understanding human brain function will require integration of data across studies using meta-analyses. In general, results that do not reach statistical significance are less likely to be published and included in a meta-analysis. Meta-analyses of fMRI studies are prone to this publication bias when studies are excluded because they fail to show activation in specific regions. Further, some studies only report a limited amount of peak voxels that survive a statistical threshold resulting in an enormous loss of data. Coordinate-based toolboxes have been specifically developed to combine the available information of such studies in a meta-analysis. Potential publication bias then stems from two sources: exclusion of studies and missing voxel information within studies. In this study, we focus on the assessment of the first source of bias in coordinate-based meta-analyses. A measure of publication bias indicates the degree to which the analysis might be distorted and helps to interpret results. We propose an adaptation of the Fail-Safe N (FSN; Rosenthal, 1979). The FSN reflects the number of null studies, i.e. studies without activation in a target region, that can be added to an existing meta-analysis without altering the result for the target region. A large FSN indicates robustness of the effect against publication bias. On the other hand, in this context, a FSN that is too large indicates that a small amount of studies might drive the entire analysis. Method We simulated 1000 simplistic meta-analyses, each consisting of 3 studies with real activation in a target area (quadrant 1 in Figure 1) and up to 100 null studies with activation in the remaining 3 quadrants. We calculated the FSN as the number of null studies (with a maximum of 100) that can be added to the original meta-analysis of 3 studies without altering the results for the target area. Meta-analyses were conducted with ALE (Eickhoff et al., 2009; 2012; Turkeltaub et al., 2012).  We computed the FSN using an uncorrected threshold (α = 0.001) and 2 versions of a False Discovery Rate (FDR) threshold (q = 0.05), FDR pID (which assumes independence or positive dependence between test statistics) and FDR pN (which makes no assumptions and is more conservative). We varied the average sample size n of the individual studies, from small (n≈10), to medium (n≈20) and large (n≈30). Results Results are summarised in Figure 2 and visually presented in Figure 3. We find a large difference in average FSN between the different thresholding methods. In case of uncorrected thresholding, the target region remains labeled as active while only 3% of the studies in the meta-analysis report activation at that location.  Further, if the sample size of the individual studies in the meta-analysis increases, the FSN decreases. Conclusions The FSN varies largely across thresholding methods and sample sizes. Uncorrected thresholding allows for the analysis to be driven by a small amount of studies and is therefore counter-indicated. While a decreasing FSN with increasing sample size might be counterintuitive in terms of robustness, it indicates that the analysis is less prone to be driven by a small number of studies. Publication bias assessment methods can be a valuable add-on to existing toolboxes for interpretation of meta-analytic results. In future work, we will extend our research to other methods for the assessment of publication bias, such as the Egger Test  (Egger et al., 1997) and test for excess of success (Francis, 2014). References Egger, M., Davey Smith, G., Schneider, M., and Minder, C. (1997), ‘Bias in meta-analysis detected by a simple, graphical test’, British Medical Journal, vol. 315, pp. 629-634. Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., and Fox, P.T. (2009), ‘Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty’, Human Brain Mapping, vol. 30, pp. 2907-2926. Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., and Fox, P.T. (2012), ‘Activation likelihood estimation revisited’, Neuroimage, vol. 59, pp. 2349-2361. Francis, G. (2014), ‘The frequency of excess success for articles in Psychological Science’, Psychonomic Bulletin and Review, vol. 21, no. 5, pp. 1180-1187. Rosenthal, R. (1979), ‘The file drawer problem and tolerance for null results’, Psychological Bulletin, vol. 86, no. 3, pp. 638–641. Turkeltaub, P.E., Eickhoff, S.B., Laird, A.R., Fox, M., Wiener, M., and Fox, P. (2012), ‘Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses’, Human Brain Mapping, vol. 33, pp. 1-13

    The Internal Anticipation of Sensory Action Effects: When Action Induces FFA and PPA Activity

    Get PDF
    Voluntary action – in particular the ability to produce desired effects in the environment – is fundamental to human existence. According to ideomotor theory we can achieve goals in the environment by means of anticipating their outcomes. We aimed at providing neurophysiological evidence for the assumption that performing actions calls for the activation of brain areas associated with the sensory effects usually evoked by the actions. We conducted an fMRI study in which right and left button presses lead to the presentation of face and house pictures. We compared a baseline phase with the same phase after participants experienced the association between button presses and pictures. We found an increase in the parahippocampal place area (PPA) for the response that has been associated with house pictures and fusiform face area (FFA) for the response that has been coupled with face pictures. This observation constitutes support for ideomotor theory

    The neural basis of unwanted thoughts during resting state.

    Get PDF
    Human beings are constantly engaged in thought. Sometimes thoughts occur repetitively and can become distressing. Up to now the neural bases of these intrusive or unwanted thoughts is largely unexplored. To study the neural correlates of unwanted thoughts, we acquired resting-state fMRI data of 41 female healthy subjects and assessed the self-reported amount of unwanted thoughts during measurement. We analyzed local connectivity by means of regional homogeneity (ReHo) and functional connectivity of a seed region. More unwanted thoughts (state) were associated with lower ReHo in right dorsolateral prefrontal cortex (DLPFC) and higher ReHo in left striatum (putamen). Additional seed-based analysis revealed higher functional connectivity of the left striatum with left inferior frontal gyrus (IFG) in participants reporting more unwanted thoughts. The state-dependent higher connectivty in left striatum was positively correlated with rumination assessed with a dedicated questionnaire focussing on trait aspects. Unwanted thoughts are associated with activity in the fronto-striatal brain circuitry. The reduction of local connectivity in DLPFC could reflect deficiencies in thought suppression processes, whereas the hightened activity in left striatum could imply an imbalance of gating mechanisms housed in basal ganglia. Its functional connectivity to left IFG is discussed as the result of thought-related speech processes

    Neural correlates of intentional and stimulus-driven inhibition: a comparison

    Get PDF
    People can inhibit an action because of an instruction by an external stimulus, or because of their own internal decision. The similarities and differences between these two forms of inhibition are not well understood. Therefore, in the present study the neural correlates of intentional and stimulus-driven inhibition were tested in the same subjects. Participants performed two inhibition tasks while lying in the scanner: the marble task in which they had to choose for themselves between intentionally acting on, or inhibiting a prepotent response to measure intentional inhibition, and the classical stop signal task in which an external signal triggered the inhibition process. Results showed that intentional inhibition decision processes rely on a neural network that has been documented extensively for stimulus-driven inhibition, including bilateral parietal and lateral prefrontal cortex and pre-supplementary motor area. We also found activation in dorsal frontomedian cortex and left inferior frontal gyrus during intentional inhibition that depended on the history of previous choices. Together, these results indicate that intentional inhibition and stimulus-driven inhibition engage a common inhibition network, but intentional inhibition is also characterized by additional context-dependent neural activation in medial prefrontal cortex

    REM sleep in acutely traumatized individuals and interventions for the secondary prevention of post-traumatic stress disorder

    Get PDF
    Increasing evidence supports a close link between REM sleep and the consolidation of emotionally toned memories such as traumatic experiences. In order to investigate the role of sleep for the development of symptoms related to traumatic experiences, beyond experimental models in the laboratory, sleep of acutely traumatised individuals may be examined on the first night after trauma. This might allow us to identify EEG variables predicting the development of posttraumatic stress disorder (PTSD) symptoms, and guide the way to novel sleep interventions to prevent PTSD. Based on our experience, patients' acceptance of polysomnography in the first hours after treatment in an emergency room poses obstacles to such a strategy. Wearable, self-applicable sleep recorders might be an option for the investigation of sleep in the aftermath of trauma. They would considerably decrease the perceived burden for patients and thus increase the likelihood of successful patient recruitment. As one potential sleep intervention, sleep deprivation directly after trauma has been suggested to reduce the consolidation of traumatic memories and hence act as a secondary preventive measure. However, experimental data from sleep deprivation studies in healthy volunteers with the trauma film paradigm have been inconclusive regarding the beneficial or detrimental effects of sleep on traumatic memory processing. Depending on further insights into the role of sleep in traumatic memory consolidation through observational and experimental studies, several options for therapeutic sleep interventions are conceivable: besides behavioural sleep deprivation, selective REM sleep suppression or enhancement by a pharmacological intervention into the serotonergic, noradrenergic or cholinergic systems might provide novel therapeutic options. While REM-modulating drugs have been used with some success for the prevention of PTSD after trauma, they have never been tried before the first night of sleep. In conclusion, more experimental and observational research is needed before sleep interventions are performed in actual trauma victim

    Cognitive enhancement: Effects of methylphenidate, modafinil, and caffeine on latent memory and resting state functional connectivity in healthy adults

    Get PDF
    Stimulants like methylphenidate, modafinil, and caffeine have repeatedly shown to enhance cognitive processes such as attention and memory. However, brain-functional mechanisms underlying such cognitive enhancing effects of stimulants are still poorly characterized. Here, we utilized behavioral and resting-state fMRI data from a double-blind randomized placebocontrolled study of methylphenidate, modafinil, and caffeine in 48 healthy male adults. The results show that performance in different memory tasks is enhanced, and functional connectivity (FC) specifically between the frontoparietal network (FPN) and default mode network (DMN) is modulated by the stimulants in comparison to placebo. Decreased negative connectivity between right prefrontal and medial parietal but also between medial temporal lobe and visual brain regions predicted stimulant-induced latent memory enhancement. We discuss dopamine's role in attention and memory as well as its ability to modulate FC between large-scale neural networks (e.g., FPN and DMN) as a potential cognitive enhancement mechanism

    Exploring the Ecological Validity of Thinking on Demand: Neural Correlates of Elicited vs. Spontaneously Occurring Inner Speech

    Get PDF
    Psychology and cognitive neuroscience often use standardized tasks to elicit particular experiences. We explore whether elicited experiences are similar to spontaneous experiences. In an MRI scanner, five participants performed tasks designed to elicit inner speech (covertly repeating experimenter-supplied words), inner seeing, inner hearing, feeling, and sensing. Then, in their natural environments, participants were trained in four days of random-beep-triggered Descriptive Experience Sampling (DES). They subsequently returned to the scanner for nine 25-min resting-state sessions; during each they received four DES beeps and described those moments (9 × 4 = 36 moments per participant) of spontaneously occurring experience. Enough of those moments included spontaneous inner speech to allow us to compare brain activation during spontaneous inner speech with what we had found in task-elicited inner speech. ROI analysis was used to compare activation in two relevant areas (Heschl’s gyrus and left inferior frontal gyrus). Task-elicited inner speech was associated with decreased activation in Heschl’s gyrus and increased activation in left inferior frontal gyrus. However, spontaneous inner speech had the opposite effect in Heschl’s gyrus and no significant effect in left inferior frontal gyrus. This study demonstrates how spontaneous phenomena can be investigated in MRI and calls into question the assumption that task-created phenomena are often neurophysiologically and psychologically similar to spontaneously occurring phenomena
    corecore